Ham Radio Station Design

INTENTIONAL DESIGN, NOT ACCIDENTAL!

Gary Breed, K9AY
2009 ZO FEST
Big Picture: The Design Process

Zoom in: Finding a Few More dB

Wrap up: Notes on Operator Efficiency
design

- to create, fashion, execute, or construct according to plan
- to conceive and plan out in the mind
- to make a drawing, pattern, or sketch of
The Usual Process

• You buy the best radio equipment you can afford

• You put up the tallest towers you can manage

• You install the biggest possible antennas

• You acquire a bunch of useful station accessories

...does it all work together?

...does it do what you want?
Design First, then Buy & Build
Design First, then Buy & Build

The design process:

1. Set overall objective (All bands/favorite bands? Competitive level?)

2. Develop the specifications (features, performance, cost, labor)

3. Block diagram design (rough outline)
Design First, then Buy & Build

The design process:

1. Set overall objective (All bands/ favorite bands? Competitive level?)

2. Develop the specifications (features, performance, cost, labor)

3. Block diagram design (rough outline)

4. Details for each block (equipment selection, interconnections)

5. Determine plan of action (timetable, which pieces first)

6. Constant feedback — things come up, so modify the plan as needed
Be Organized, But Avoid Pitfalls

• Listen to others, but analyze your own wishes and capabilities
• Don’t hesitate to adapt the design, but update all of it
• Prioritize — Decide where to start, then get things done
• Don’t spend all your time designing — build it!
Design First, then Buy & Build

The design process:

1. Set overall objective (All bands/favorite bands? Competitive level?)

2. Develop the specifications (features, performance, cost, labor)

3. Block diagram design (rough outline)

4. Details for each block (equipment selection, interconnections)

5. Determine plan of action (timetable, which pieces first)

6. Constant feedback — things come up, so modify the plan as needed
Finding a Few More dB

- Being a few dB louder
- Hearing a few dB better
- Even when you have a good station: finding the “next dB”
The Marvelous dB

The decibel (dB) uses a logarithmic scale (\log_{10} —powers of 10) to compress very large numbers into smaller, more easily managed form.

- $\times 1 = 10^0 = 0$ dB
- $\times 10 = 10^1 = 10$ dB
- $\times 100 = 10^2 = 20$ dB
- $\times 1000 = 10^3 = 30$ dB
- $\times 1,000,000 = 10^6 = 60$ dB
(+51.8 dBm) 150W Low Power
(+37 dBm) 5W QRP Power
Ham down the street
Shortwave broadcast stations
20M at start of Sweepstakes

160M on a very quiet night
Typical 20M noise
Dead band noise at 15M — VHF

Chart: \(242 \text{ dB} = 10^{-21} \text{ to } 1.5 \times 10^3 \text{ Watts} = \times1,500,000,000,000,000,000,000,000,000,000 \)

1500W Legal Limit Power (+61.8 dBm)
Start of overload (blocking) on a good receiver
S9 +40 dB
~Maximum signal level with no IMD, good RX
S9 meter reading (-73 dBm)

Receiver noise floor — no preamp
Receiver noise floor — preamp on

1 Hz Noise Floor, Room Temp. (-174 dBm)
Dead Band to 1500W \(\approx 200 \, \text{dB} \)

Dead Band to Strongest Signals \(\approx 130 \, \text{dB} \)

Human Hearing Audio Range \(\approx 100 \, \text{dB} \)

Human Eyesight Perception Range \(\approx 100 \, \text{dB} \)

Note: Human hearing and eyesight have a logarithmic (dB) response
Despite the wide dB range of signals and our senses...

We can detect audio level differences of less than 1 dB

Fractions of a dB really matter!

(...but only after you get all the easy dB)
Where do we find another dB?

- Bigger antennas (3 el. to 4 el. is ~1 dB) (16 to 64 radials ~1 dB)
- Higher antennas (or optimized height)
- Increased power (1200W to 1500W)
- Lower loss coax (RG8x → 9913 → hardline)
- SSB speech processing
Where do we find another dB?

• Radio is TWO-WAY communications!

• Better receiver (lower IMD, better NF)

• Receive antennas (mainly low bands)

• Reduce ambient noise (fix it or move)

• Determine best DSP settings
Case History:
160M Vertical vs. Inverted-L

• 2005/6 - 2007/8: Inverted-L, 55 ft. vertical portion
 Radial system 26 × 110 ft.

• 2008/9: 100 ft. tower with top-loading capacity hat
 Same type radial system as previous Inv-L

• Subjectively, the new tower works much better than the Inv-L,
 with greater difference than simple EZNEC models predict

• Since A/B comparison is not available, can I identify differences
 that explain the improvement?
Inverted-L:
Feedpoint: 22 ohms
Ground resistance (est): 3 ohms
Power loss: 1.27 dB

100 ft. Top-Loaded:
Feedpoint: 46 ohms
Ground resistance (est): 3 ohms
Power loss: 0.59 dB

Feedline: 300 ft. 9913 & RG8
Loss: 0.62 dB

Feedline: 275 ft. 7/8” Heliax
Loss: 0.14 dB

Net improvement: +1.16

Notes:

1. Inv-L has about 0.2 dB “front-to-back” in line with top wire. Otherwise, modeled radiation patterns have little difference except at high angles.

2. Location difference of 75 ft., new tower ~6 ft. uphill. Small additional slope on radials raises radiation resistance, and slightly improves low angle radiation.

3. Future 1-ohm equiv. resistance radial system = another 0.4 dB improvement
Final Topic: Operator Efficiency

You are Unique!

• Comfort and efficiency requirements can be quite different

• Spend some time analyzing your personal habits for the best...

 Equipment layout
 Especially rotator controls, switches, other “reach for” items
 Right-handed or left-handed
 Computer-centric vs. Radio-centric
 SO1R, SO2R or some type of mix (SO1.5R)

• Before you copy someone else’s idea – try it out!